Fundamentals of Public Key Algorithms

There are many and quite diverse public key algorithms that fall broadly into two groups:

(i) Hash algorithms: that take message M and perform an irreversible transformation that result of which is (with high probability) unique to the message;

(ii) Secret Key algorithms: that take a message block mi, and perform a reversible transformation, called encryption E, with result a block cipher ci; then chain the blocks ciphers together to form a message cipher C.

Public key algorithms look very different from one another in

· how they perform the function, and

· what function they perform

All, however, have a pair of related keys
Brief overview:

· RSA, ECC for encryption and digital signatures;

· ElGamal, DSS for digital signatures;

· Diffie-Hellman allow establishment of shared secret, but do not have algorithm to actually use secret;

· Zero knowledge proof system for authentication.

Modular Arithmetic – Basic Concepts
Addition modulus or modulo or mod n, denoted as + mod n or +10
Definitions:

(1) a mod n is the remainder of the integer division of a by n , e.g.

15mod10=5, 8 mod 5 = 3

a mod n = r (a = k*n + r

where k is some integer and the remainder r ({0,1,2,…,n-1}. (That’s all the possible remainders of an integer division by n, because n would have remainder 0, n+1 remainder 1, etc.)

(2) a is congruent or equivalent to b mod n if and only if a and b have the same remainder from the integer division by n.

We write a (b mod n, e.g. 15 (25 mod 10, 3 (8 mod 5

(3) the set of numbers congruent mod n can be considered the same with respect to the property “having the same reminder r from the integer division by n” and are called a congruence or equivalence class modulo n, e.g.

{0,10, 20, 30, ….} equivalence class for r=0 mod 10

{5,15, 25, 35, ….} equivalence class for r=5 mod 10

{3,8, 13, 18, ….} equivalence class for r=3 mod 5

If the numbers in an equivalence class are considered the same, then it does not matter what number we choose to represent the class, i.e. any number can represent the class, and we can save ourselves some writing by representing the class through some (anyone) of its members, e.g.

{0,10, 20, 30, ….} = [0] = [10] = … mod 10

{5,15, 25, 35, ….} = [5] = [15] = … mod 10

{3,8, 13, 18, ….} = [3] = [8] = … mod 5

Obviously it is easier to use the remainder r (boldface above) as representative for the congruence, as it is always the smallest nonnegative integer in the class with a value in the set Zn = {0,1,2,…,n-1}
Finally let’s note that counting modulo n is like counting from 0 to n-1 and then starting all over again as n is equivalent to 0 mod n, n+1 equivalent 1 mod n, etc .,e.g.:

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	20
	21
	22
	23
	24
	25
	26
	27
	28
	29

…

…

	[0]
	[1]
	[2]
	[3]
	[4]
	[5]
	[6]
	[7]
	[8]
	[9]

Keeping in mind that the arithmetic operations addition and multiplication (and by extension subtraction, division, exponentiation) are just shortcuts for more efficient counting, we realize that we can perform all modulus operations just as regular addition and multiplication as long as we remember that now we know only n different integer values instead of infinitely many, i.e. we can count only from 0 to n and then start all over again instead of being able to continue at infinitum, and thus have to convert our resulting sums and products modulo n. The end effect is a squeezing (or mapping to use a more technical term) of the infinitely many integers into the finite set Zn = {0,1,2,…,n-1}. From the point of view modulo n arithmetic has only n distinct values (one per equivalence class, i.e. the equivalence classes are seen just as values) instead of the infinitely many values of integer arithmetic. Accordingly

(a + b) mod n = a mod n + b mod n

(a * b) mod n = a mod n * b mod n

Now let’s ask the question: Can we use modulo n operations for encryption?
To start with, the fact that modulo n operations deal with a finite number of values instead of the infinitely many of integer operations, is a good thing, because we can use these values as our alphabet. Obviously, nobody wants to deal with an alphabet that has infinitely many letters.

Next is the fundamental question: Does it work? i.e. Can we transform our message into a cipher (encryption E) and then transform the cipher back into the original message (decryption D)? This has to work for any message and any cipher of course, i.e.

And if it works Is it secure?
We’ll ask these questions for the modulo n operations:

1. Modular addition

The easiest operation is modulo n addition, so let’s try it first:

where e and d are some constants in Zn = {0,1,2,…,n-1}, that we refer to as the encryption and decryption key respectively. The above relations, E and D, are mappings and must work for all M and C.

To get some intuition let’s look at mod 10 addition on Z10 = {0,1,2,…,9}

	+
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	0
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	1
	1
	2
	3
	4
	5
	6
	7
	8
	9
	0

	2
	2
	3
	4
	5
	6
	7
	8
	9
	0
	1

	3
	3
	4
	5
	6
	7
	8
	9
	0
	1
	2

	4
	4
	5
	6
	7
	8
	9
	0
	1
	2
	3

	5
	5
	6
	7
	8
	9
	0
	1
	2
	3
	4

	6
	6
	7
	8
	9
	0
	1
	2
	3
	4
	5

	7
	7
	8
	9
	0
	1
	2
	3
	4
	5
	6

	8
	8
	9
	0
	1
	2
	3
	4
	5
	6
	7

	9
	9
	0
	1
	2
	3
	4
	5
	6
	7
	8

Example: + mod 10

Does it work and why? A quick study of the table shows that we can use as (e,d) any one of the pairs (1,9),(2,8),(3,7), (4,6), (5,5). If e is the column index the corresponding column gives the cipher for the row indices, and is the row index encoded with 0 is the decryption key d.

In general: C = (M+e) mod n and M = (C+d) mod n

(C = (C+d +e) mod n

For this to work for all C we need to have an element i such that for any member a of Zn

a + i = i + a = a

i is called identity element. If such an identity exist we can require

((d + e) mod n = i
Any two elements that satisfy the above equation are called inverse to each other and denoted as

d = e-1 and e = d-1.

For the addition i=0, and the inverses are called additive inverses:

Note: This is one example that illustrates why the existence of an identity and inverse elements is so important. In this particular case it allows us to find the keys d and e. More generally the existence of an identity and inverse elements allows us to solve equations of the type

 (x + a) mod n = 0

or for some other modulus n operation

(x ♥ a) mod n = i,

where i is the identity for the ♥mod n operation.

If it weren’t for the special properties of the identity and inverses, finding a unique solution for the equation would not be possible. And we all know that there are a lot of very interesting applications for finding the unknown in such equations.

Thus in general for the modulo n addition any element of Zn can be used as an encryption key e with the decryption key d=e-1 , or d+e = 1 mod n. This also includes the trivial (0,0) which fulfills the math requirements but does not do much of a transformation, so nobody would be eager to use it for encryption.

Is it secure? - Hardly: even a brute force approach will quickly yield the key e, from which the decryption key d is trivially computed.

Maybe we will be luckier with multiplication modulo n which is a slightly more complex operation.

2. Modular multiplication

Again let’s first build intuition with the mod 10 multiplication:

Example: * mod 10

	*
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	1
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	2
	0
	2
	4
	6
	8
	0
	2
	4
	6
	8

	3
	0
	3
	6
	9
	2
	5
	8
	1
	4
	7

	4
	0
	4
	8
	2
	6
	0
	4
	8
	2
	6

	5
	0
	5
	0
	5
	0
	5
	0
	5
	0
	5

	6
	0
	6
	2
	8
	4
	0
	6
	2
	8
	4

	7
	0
	7
	4
	1
	8
	5
	2
	9
	6
	3

	8
	0
	8
	6
	4
	2
	0
	8
	6
	4
	2

	9
	0
	9
	8
	7
	6
	5
	4
	3
	2
	1

Does it work and why? Looking at the table above we notice that 1, 3, 7, 9, can be used as values for e, but 2,4,5,6,8 cannot. (This is in contrast to the addition mod 10 where every value worked fine for e.)

For example if we choose 3 as the encryption key e, any number from Z10 = {0,1,2,…,9} maps to a unique and different value and thus we can decrypt to obtain the original message, e.g.

etc.

However, if we choose e=6 the values 4 and 9 both map to the same value 4, and decryption is impossible:

In general: C = (M*e) mod n and M = (C*d) mod n

(C = (C*d *e) mod n

Again, for this to work for all C we need to have an element i such that for any member a of Zn

a * i = i * a = a

The identity for the multiplication is i=1. Now we can require

((d * e) mod n = 1
Any two elements that satisfy the above equation are called multiplicative inverses to each other and denoted as

d = e-1 and e = d-1.

It is at this point, unfortunately, that we run out of luck: not all elements in Z10 have a multiplicative inverse (although all of them had an additive inverse). Specifically 1, 3, 7, 9 have multiplicative inverses (the numbers 1,7,3,9 respectively), while 0,2,4,5,6,8 have not.

How do these two sets differ from each other with respect to their relation to the number 10? Can we come up with some characteristics or pattern that allows to differentiate between the two sets? As operations mod n are all about divisibility properties of the number n it makes sense to look for the differentiating characteristics in the shared divisibility properties of the numbers in the twosets. (After all remainder 0 means the number is divisible by n, the modulus is simply the remainder of the integer division, and thus says why/how the number is not divisible by n)? Taking a careful look we notice that the numbers in the first set {1, 3, 7, 9} do not have common divisors with 10 while the ones in the second set {0,2,4,5,6,8} do. This of course is just a guess, but it turns out to be the right one: It can be proven that only numbers that do not share common divisors have a multiplicative inverse. (Intuitively if two numbers a and n share a common divisor the number of distinct remainder mod n is reduced by a factor equal to this divisor, e.g. 2 and 10 have only 5 distinct remainders, 5 and 10 have only 2 distinct remainders, etc.) Numbers that do not have common divisors have proved so useful that they deserved a special name - relatively prime.

Definition: a and b are relatively prime to each other if and only if they do not have common divisors, i.e. if their greatest common divisor is 1:

a, b relatively prime (gcd(a,b) = 1

The number of numbers less than n and relatively prime to n is denoted by ((n) is called the Euler totient function (from total and quotient). For some primes p and q

((p) = (p – 1)

 ((p*q) = (p – 1)(q – 1)

Is encryption with modular multiplicationt secure? - Unfortunately not. The brute force approach fails for large keys (e.g. for key lengths larger than 100). But the multiplicative inverse can be efficiently calculated using Euclid greatest common divisor algorithm provided an inverse exists.

3. Modular exponentiation

The next operation to try is exponentiation. There is reason to hope that encryption based on exponentiation will be harder to crack, as exponentiation quickly yielded outlandishly large numbers. But then the modulus will reduce the results to a finite set, and the question remains whether it still will be secure and, if yes, how efficient?

Example: exponentiation xy mod 10

	xy
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	2
	1
	2
	4
	8
	6
	2
	4
	8
	6
	2
	4
	8
	6

	3
	1
	3
	9
	7
	1
	3
	9
	7
	1
	3
	9
	7
	1

	4
	1
	4
	6
	4
	6
	4
	6
	4
	6
	4
	6
	4
	6

	5
	1
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5

	6
	1
	6
	6
	6
	6
	6
	6
	6
	6
	6
	6
	6
	6

	7
	1
	7
	9
	3
	1
	7
	9
	3
	1
	7
	9
	3
	1

	8
	1
	8
	4
	2
	6
	8
	4
	2
	6
	8
	4
	2
	6

	9
	1
	9
	1
	9
	1
	9
	1
	9
	1
	9
	1
	9
	1

Note that the table has additional columns due to the fact that

ax+y mod n ≠ a(x+y)mod n mod n

An inspection of the exponentiation table shows that 1, 3, 5, 7, 9,11 work as encryption key values, while the rest 0,2,4,6,8, does not. In contrast to modular multiplication, not all values in the first set are relative primes to 10, e.g. they include 5. However, they all are relatively prime to the Euler totient function of n, i.e. ((n=10)=4. Indeed it can be proven that this is the distinctive characteristic for a large class (not all) of n, which luckily includes the important application cases.

Let’s sketch the requirements for encryption/decryption and build intuition for the finding the inverse of an exponential encryption function.

Substituting M = Cd mod n into C = Me mod n we obtain

C = Cd*e mod n

The question now is: When do d and e satisfy the above equation? The seemingly easy answer d*e = 1 mod n is not correct, because one of the possible key pairs in the above example (d,e) = (5,5) does not satisfy it. Without going into the details let’s sketch out the main ideas. We start with a special case known as Fermat’s Little Theorem for which we omit the proof: If p is prime then

ap-1 (1 mod p

for all a that are not multiples of p (a (kp).

Can we guess the relationship between exponent and modulus, and use it to generalize the theorem? For a prime p, p-1 is the number of all numbers less than p and relatively prime to p, i.e. the totient function ((n=p) = p-1. In other words if our n is a prime, a to the power of the totient function of n is 1 mod n. Euler’s generalization of Fermat’s Little Theorem states that for all a and n relatively prime

a((n) (1 mod n

Now we can use this property to further generalize:

ab mod n = (ab) * (a((n)) mod n = (ab) * (a((n))k mod n = ab + k*((n) mod n

or

ab mod n (ab*mod ((n) mod n (ab + k*((n) mod n
, with k some integer,
Finally it can be shown that the above equation holds for all n that are primes or a product of distinct primes, i.e for any n that is a product of primes but does not have p2 as a factor for some prime p.

Thus all we need to do is choose n as a product of distinct primes and we are guaranteed the above property, which in turn guarantees an inverse for the exponentiation:

If n = p*q, where p and q are primes and p ≠ q we can use the special case for b=1

a1 mod n (a1*mod ((n) mod n (a1 + k*((n) mod n

or

C1 = Cd*e mod n = C1*mod ((n) mod n (C1 + k*((n) mod n

d*e = 1 mod ((n)
or
d*e = 1 + k* ((n)

or

d = e-1 mod ((n)

These are the basic concepts needed to understand why the RSA algorithm works and is secure.

M

h(M)

hash

irreversible

encryption

reversible

 E(M) = C

M

m1 m2… mi… mn

c1 c2… ci… cn

mi

E(mi) = ci

reversible

encryption

(b mod ((n)

(1 mod n

D(C) = Cd mod n = M

M

power(C,d)

E(M) = Me mod n = C

power(M,e)

E

*6 mod n

Impossible;

Not a mapping

*??? mod n

9

24 ≡ 4 mod10

54 ≡ 4 mod10

D

4

63 ≡ 3 mod10

9

3

42 ≡ 2 mod10

6

2

D(C)=(C*d) mod n = M

M

*d mod n

E(M)=(M*e) mod n = C

*e mod n

E

D

*7 mod n

*3 mod n

21 ≡ 1 mod10

3

1

D

E

M

E(M)=(M+e) mod n = C

+e mod n

D(C)=(C+d) mod n = M

+d mod n

D

M

E(M)=C

D(C)=M

E

Fall 2003
Fundamentals of PKE

Zlateva
Page 10 of 10

